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Abstract: The dynamics of finite temperature U(N) gauge theories on S3 can be de-

scribed, at weak coupling, by an effective unitary matrix model. Here we present an exact

solution to these models, for any value of N , in terms of a sum over representations. Taking

the large N limit of this solution provides a new perspective on the deconfinement tran-

sition which is supposed to be dual to the Hawking-Page transition. The large N phase

transition manifests itself here in a manner similar to the Douglas-Kazakov phase transition

in 2d Yang-Mills theory. We carry out a complete analysis of the saddle representation in

the simplest case involving only the order parameter TrU . We find that the saddle points

corresponding to thermal AdS, the small black hole and the large black hole can all be

described in terms of free fermions. They all admit a simple phase space description a la

the BPS geometries of Lin, Lunin and Maldacena.
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1. Introduction

Though we know of many instances where a gauge theory is a holographic description of a

gravitational theory, we are yet to understand the precise way in which a local diffeomor-

phism invariant theory in one higher dimension is encoded in the dynamics of the gauge

theory. In a sense, the redundancy of diffeomorphisms has been largely eliminated in the

gauge theory description. But this has come at the cost of losing information about the

locality of the bulk description. Is there a natural way in the gauge theory to restore the

redundancies which characterise the geometrical description of the bulk?
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A partial hint comes from the beautiful work of Lin, Lunin and Maldacena [1] who

showed that the geometry of a class of half-BPS solutions of the bulk theory is completely

fixed by specifying a single function of two of the bulk coordinates. This function, which

takes values either zero or one in the entire two dimensional plane, was identified with

the phase space distribution of free fermions describing the half BPS dynamics in the

gauge theory. In other words, the configuration space of the bulk, with its redundancies,

was identified with the phase space of the boundary degrees of freedom. In fact, the

quantisation of the space of BPS configurations on the gravity side agrees with those of the

free fermions [2, 3]. Notice that the fermionic phase space description is also a redundant

one since it is the shape of the perimeter of the ”filled fermi” sea that completely determines

everything. The phase space picture therefore appears to be a step in the right direction.

However, the half-BPS case seems to be very special and the picture of free fermions is

not likely to be generally applicable. It is therefore a bit of a surprise that, in this paper,

we find a similar free fermion phase space description in the non-supersymmetric context of

finite temperature AdS/CFT. It is very well known [4] that the thermal partition function of

the gauge theory exhibits a behaviour which is qualitatively similar to the Hawking-Page [5]

phase diagram on the gravity side. In particular, we find a free fermionic description in

the weakly coupled gauge theory, for each of the saddle points that correspond to Thermal

AdS, the (unstable) ”small” AdS Schwarschild black hole as well as the ”big” AdS black

hole. In each case there is a simple region in phase space which is the filled fermi sea.

Our starting point is the effective unitary matrix model that describes the holonomies

of the Polyakov loop at weak gauge coupling [6, 8]. As was argued in [8], in the free U(N)

Yang-Mills theory on S3 at finite temperature, all modes are massive and can be exactly

integrated out, except for the zero mode of A0. The dynamics of this interacting mode

is naturally expressed in terms of a unitary matrix model for the holonomy U , along the

thermal S1. At weak coupling, we can continue to integrate out all the other modes and

end up with (a more complicated) effective matrix model for U . These matrix models have

been well analysed, in the large N limit, in terms of the collective field σ(θ) which is the

eigenvalue density of U . They have been shown to exhibit a phase structure which describes

the deconfinement transition and is qualitatively very similar to that of the Hawking-Page

description of AdS gravity at finite temperature [8 – 10].

In this paper, we present an exact solution to the partition function of these matrix

models, which is valid for any finite N . The answer is in terms of characters of the

conjugacy classes of the symmetric group with a sum over different representations and

classes. While explicit, the expressions are, in general, quite complicated. At large N

we expect the answer to show the non-analytic behaviour, as one varies the temperature,

which is characteristic of a phase transition. This is seen in our expressions from the fact

that at large N , there is a dominant saddle point in the sum over representations. The

nature of this saddle point exhibits non-analytic jumps as one varies the temperature. This

is similar to how the large N phase transition of Douglas-Kazakov [12], in 2d Yang-Mills

theory, manifests itself.

The quantitative method of analysis, as in 2d Yang-Mills, introduces a density u(h) for

the Young tableaux that label the representations. This essentially measures the number
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of boxes in the rows of the tableaux. One can write an effective action for u(h) in the large

N limit and study its saddle points. We do this analysis very explicitly for the simplest

and physically important case1 where one has only terms involving TrU and TrU †. The

actual saddle point equations are close to that of models studied by Kazakov, Staudacher

and Wynter [13], though those cases did not exhibit a phase transition. In our case, one

finds, not surprisingly, exactly the phase diagram obtained by the usual eigenvalue density

analysis.

However, what is of interest in the present analysis, is the nature of the saddle point

representations u0(h), in both the low and high temperature phases. It turns out that they

bear a simple relation to the saddle point eigenvalue densities σ0(θ). Essentially the two

turn out to be functional inverses of each other. The best way, in fact, to state the relation

between the two is to view (h, θ) as coordinates on a two dimensional phase space and

define an appropriate region R with constant fermion density ρ(h, θ) = 1
2π in its interior

and zero outside. It then turns out that
∫

ρ(h, θ)dh = σ0(θ)
∫

ρ(h, θ)dθ = u0(h). (1.1)

In other words, the region R is determined by the shape h0(θ) which is obtained from

inverting the equation θ = πu0(h).

It turns out that the region R corresponding to thermal AdS is given by the unit

disk in phase space. This is indeed what one also obtains in the LLM picture [1] for the

global AdS spacetime. The regions corresponding to the small black hole and and the big

black hole are more complicated kidney-shaped geometries as shown in figures 7–9. The

shape of these regions is not modified in functional form when one includes perturbative

corrections in terms of an effective action involving only the relevant winding number one

modes. Thus at least in the weak coupling expansion this geometry of the phase space

distribution is robust and therefore can be expected to capture some essential features of

the corresponding bulk geometries. It would be very interesting to learn what these features

might be. In particular, it is natural to ask whether there is a direct translation into a

supergravity solution like in the LLM case. Gaining an understanding of these points might

help us learn why the matrix models capture the dynamics of the gravity phase transition

so well.

The plan of the paper is as follows. In the next section (section 2) we review the unitary

matrix models that describe the finite temperature dynamics at weak coupling. We also

recapitulate the results that follow from a large N analysis in terms of the eigenvalue density

σ(θ) and the correspondence with the phase diagram on the gravity side. In section 3 we

write down the exact finite N solution to the models at zero coupling and also show how

the method of solution generalises to the weakly coupled case. In section 4 we analyse the

large N limit of the exact solution for models involving only TrU and TrU †. We do this in

terms of the Young Tableaux density u(h) and find a phase transition as expected. We find

1The (a, b) model studied in [10] falls, for instance, in this class.
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the expressions for the saddle points u0(h) that dominate at both low and high temperature

and compute their free energies to find agreement with the results of the eigenvalue density

analysis. In section 5.1, we show how the results of section 4 imply a relation of u0(h)

with the saddle point eigenvalue densities σ0(θ). We show how this relation can be simply

understood in terms of a free fermionic phase space picture in section 5.2. In section 6 we

close with various comments on the possible implications of these results which need to be

fleshed out in the future. Appendices contain details of some of the calculations as well as

some generalisations.

2. The finite temperature partition function for Gauge theories on S
3

2.1 The effective action for the holonomy

In the AdS/CFT correspondence the four dimensional gauge theory lives on the boundary

S3 (together with the R direction for time) of the AdS5 spacetime. In the finite temperature

version, the (Euclidean) gauge theory now has a thermal S1 instead of R. Studying the

dynamics of the thermal gauge theory on S3×S1 offers some important simplifications. In

the free gauge theory (defined as the λ = g2
YMN → 0 limit), most of the modes are massive

with a scale set by the radius of the S3. There is a single massless mode which is the zero

mode of the temporal component of the gauge field.

α =
1

VS3

∫

S3

A0. (2.1)

This mode is therefore strongly self-interacting even at arbitrarily weak ’tHooft coupling

λ. Consequently, one can, in the free theory, exactly integrate out all the massive modes

and obtain an exact effective action for the mode α. This analysis was carried out in [8]

and one obtains a unitary matrix model in terms of the holonomy2

U = eiβα, (2.2)

where β = 1
T is the radius of the thermal circle.3

One finds that the gauge theory partition function (with U(N) gauge group and

restricting to adjoint matter fields) on S3 × S1 is given by,

Z(β) =

∫

[dU ] exp

[ ∞
∑

n=1

an(T )

n
Tr(Un)Tr(U †n)

]

, (2.3)

where the coefficients an(T ) are given, in terms of x = e−β , by

an(T ) = zB(xn) + (−1)n+1zF(xn). (2.4)

2This unitary matrix model representation of the finite temperature partition function was given first

by [6] based on enumeration of states in the free theory. See also [7].
3The unitary matrix model for the free gauge theory was obtained earlier by Sundborg [6] by counting

states of the free theory. See also [7].
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Here zB(x) and zF(x) are single particle partition functions of the bosonic and

fermionic.modes respectively. They completely capture the field content of the gauge the-

ory. The explicit expressions for zB(x) and zF(x), for fields of different spin are given

in [8].

The above expression was derived at zero coupling where one has only a one loop

contribution from integrating out all the massive modes. For weak ’t Hooft coupling, one

may continue to integrate out the massive modes and obtain a more general (and more

complicated effective action for the holonomy U). The structure of the effective action is

now [8]

Z(β, λ) =

∫

[dU ] exp Seff(U) (2.5)

where

Seff(U) =
∑

{ni}
a{ni}(λ, T,N)

1

Nk

k
∏

i=1

TrUni (2.6)

with the integers ni obeying
∑

i ni = 0 and the coefficients a{ni}, of a term with k traces,

making their first appearance at (k − 1) loops in perturbation theory and consequently

having a planar contribution starting with λk−2.

Therefore, in perturbation theory, all the non-trivial low energy dynamics of the finite

temperature theory on S3 is captured by this unitary matrix model. It is the properties of

this general class of unitary matrix models that we will study in this paper.

However, one can make a further important simplification. The order parameter for

the large N phase transition exhibited by these models (reviewed in the next subsection)

is TrU . Consequently, one can also imagine integrating out all the TrUn (with n 6= ±1)

and obtaining an effective action purely in terms of TrUTrU †. This is not easy to carry

out explicitly. Therefore one can consider toy models of the form [10]

Z =

∫

[dU ]eN2Seff(x) , x =
1

N2
TrUTrU † , (2.7)

where

Seff(U) = a1(λ,T)TrUTrU † +
b1(λ,T)

N2
(TrUTrU †)2 +

c1(λ,T)

N4
(TrUTrU †)3 + · · · (2.8)

with S(x) being convex and S′(x) being concave. The simplest such model is the so-

called (a, b) model [10] in which one keeps only the first two coefficients in the Seff given in

eq. (2.8).

Z(a1, b1) =

∫

[dU ] exp

[

a1TrUTrU † +
b1

N2

(

TrUTrU †
)2
]

, (2.9)

where a1 and b1 are functions of temperature T and λ.

2.2 Eigenvalue density analysis at large N

The above unitary matrix models can be analysed using standard techniques in the large

N limit. We briefly review the results [8, 10] in this subsection.
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One introduces the eigenvalue density

σ(θ) =
1

N

N
∑

i=1

δ(θ − θi) (2.10)

where the holonomy matrix U takes the diagonal form

U = diag(eiθi ). (2.11)

Let us start with the free partition function eq. (2.3). It can be expressed in terms of

a functional S[σ(θ)]

Z(β) =

∫

[Dσ]eN2S[σ(θ)], (2.12)

where

S[σ(θ)] =

∫

dθ1

∫

dθ2σ(θ1)σ(θ2)V (θ1 − θ2). (2.13)

Here, the two body potential V (θ, T ) is given by

V (θ, T ) = ln[2] +

∞
∑

n=1

1

n
(1 − an(T )) cos(nθ). (2.14)

The general case for arbitrary an is actually quite cumbersome to analyse. A self

consistent method was given in [8]. See also [18] for a more general method. As mentioned

above the crucial order parameter is TrU , therefore we will often concentrate on the case

where we keep only the terms with TrU,TrU †. In other words, we set an = 0 for n > 1.

For this case4 where only a1 6= 0, one can explicitly obtain the saddle points for the above

functional (2.13). One finds the following

• For a1 < 1, the minimum action is for the eigenvalue density

σ(θ) =
1

2π
. (2.15)

The free energy is zero for this configuration (to order N2).

• For a1 = 1, there is a continuous family of minimum action configurations (labeled

by a parameter ξ) for which the eigenvalue distribution is,

σ(θ) =
1

2π
(1 + 2ξ cos θ) 0 ≤ 2ξ ≤ 1 . (2.16)

All these configurations also have free energy zero.

• For a1 > 1, there is a new saddle point whose eigenvalue distribution function is given

by

σ(θ) =
1

π sin2
(

θ0

2

)

√

sin2

(

θ0

2

)

− sin2

(

θ

2

)

cos

(

θ

2

)

(2.17)

4One can estimate that an ∼ 0 for n > 1, at the phase transition temperature. Even at higher temper-

atures, the contributions of the higher an is typically small.
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where,

sin2

(

θ0

2

)

= 1 −
√

1 − 1

a1(T )
≡ 1

2ξ
. (2.18)

Note that this configuration is gapped unlike the above ones. The free energy for this

configuration is (expressed in terms of ξ)

F = −N2T

[

ξ − 1

2
ln(2ξ) − 1

2

]

. (2.19)

Thus we see that there is a first order phase transition at a1 = 1, which corresponds to a

temperature T = TH .

This was for zero coupling. Perturbatively, we have more complicated matrix models

eq. (2.6). Restricting to models of the form eq. (2.7), such as the (a, b) model, we can

once again carry out a saddle point analysis of the eigenvalue density, using a Hartree-Fock

approach. We now review the results (see [10] for more details).5

The large N saddlepoint equation for the model (2.7) is

−
∫

σ(θ)dφcot

(

θ − φ

2

)

= 2S′
eff(σ2

1)σ1sin θ (2.20)

where

σ1 =
1

N
TrU .

The solutions of this saddle equation are given by,

σ1 = S′
eff

(σ2
1)σ1 , 0 ≤ σ1 ≤ 1

2
(2.21)

and

S′
eff

(σ2
1) =

1

4σ1(1 − σ1)
,

1

2
≤ σ1 ≤ 1 . (2.22)

The phase structure is as follows:

(i) For sufficiently low temperature the only possible solution is of eq. (2.21)

σ1 = 0 . (2.23)

This stable saddlepoint in fact has the uniform distribution eq. (2.15). It is identified

with the thermal AdS saddlepoint on the gravity side.

(ii) At a higher temperature T0, we find two new solutions, now of eq. (2.22) and thus

with non-zero σ1. The eigenvalue distribution for both these distributions are of the

same form as eq. (2.17) (with different values of the parameter ξ). One of these is

stable and the other unstable. On the gravity side, they can be identified with the

small black hole (SBH) and the big black hole (BBH) respectively.

5One can also study the general models by expressing them in terms of a suitable transform [9, 10, 18]

of the one plaquette matrix model [16, 17]. This is particularly useful when studying the vicinity of points

where the large N expansion breaks down.
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(iii) There exists a temperature T1 > T0 where the stable saddle points of (i) and (ii)

exchange dominance. This temperature corresponds to the Hawking-Page tempera-

ture where the BBH has a lower free energy than thermal AdS in the semi-classical

gravity path integral.

(iv) At some temperature Tc > T0, the eigenvalue distribution of the unstable saddlepoint

in (ii) changes from the gapped one in (2.17) to the ungapped one in (2.16). This

Gross-Witten-Wadia(GWW) like phase transition has been identified by the authors

of [10] with the black-hole string transition (see also [11]).

(v) And finally there exists a temperature TH , the Hagedorn temperature, when the

unstable saddlepoint merges with the saddle point in (i). Above TH the saddlepoint

in (i) becomes tachyonic.

It is quite remarkable how the general class of matrix models (2.7) captures all the de-

tailed qualitative features of the Hawking-Page phase diagram. This has been subsequently

generalised to the case where one has a charge or chemical potential [22, 23] (see also [24]).

One of the main new features [22] argued in the case of fixed charge is that we have a

term in Seff(U) of eq. (2.8) which is of the form ln((TrUTrU †). This has the effect that

we no longer have the saddle point (i) above with uniform distribution. This matches with

the known feature of the charged case that we never have thermal AdS as a saddlepoint.

The only saddlepoints are of the form (2.17) and (2.16) and correspond to different kinds

of black holes, small and big, stable and unstable. We refer the reader to [22, 23] for the

details of the matching with the gravity phase diagram.

3. Exact solution at finite N

In this section we will obtain an exact expression for the gauge theory partition func-

tion (2.3) of the free theory. As we will see the method of solution can be straightforwardly

generalised to the general case described by eq. (2.6).

Starting with the matrix model which captures the free gauge theory,

Z =

∫

[dU ] exp

[ ∞
∑

n=1

an(T )

n
TrUnTrU †n

]

, (3.1)

we can expand the exponential to obtain for the integrand

exp

[ ∞
∑

n=1

an(T )

n
TrUnTrU †n

]

=
∑

~k

1

z~k

∏

j

a
kj

j Υ~k
(U)Υ~k

(U †). (3.2)

Here,

z~k
=
∏

j

kj !j
kj (3.3)

and

Υ~k(U) =

∞
∏

j=

(TrU j)kj . (3.4)
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It is convenient to write this in terms of group characters using the Frobenius formula,

Υ~k
(U) =

∑

R

χR(C(~k)) TrRU, (3.5)

where χR(C(~k)) is the character of the conjugacy class C(~k) of the permutation group6

SK , (K =
∑

jkj), in the representation R of U(N).

Now we can carry out the integral over the holonomy using the orthogonality relation

between the characters of U(N),7

∫

[dU ] TrR(U) TrR′(U †) = δRR′ . (3.6)

Therefore we obtain

Z(β) =
∑

~k

∏

j a
kj

j

z~k

∑

R

[

χR(C(~k))
]2

. (3.7)

This is an exact expression for any β and N for the partition function of the free gauge

theory. In the next section we will further analyse the properties of this solution. However,

it should be noted that the answer is completely explicit. The sum over representations

of U(N) can be labelled by Young Tableaux with N rows and arbitrary numbers of boxes

in each row. The characters of the conjugacy class are determined recursively by the

Frobenius formula [19]. Explicit expressions for the most general case are not simple but

have been given in the literature [20].

In the strict N = ∞ limit where the sum over representations is unrestricted, we can

use the group theory identity for the orthogonality of characters of different conjugacy

classes (see for instance, [19] pg.110) to obtain

Z(β) =
∑

~k

∏

j

a
kj

j =
∏

j

(1 − aj)
−1 . (3.8)

This agrees with the exact N = ∞ answer derived in [8].

In the special case where only a1 6= 0, the exact answer (3.7) is given by the simpler

expression,

Z(β) =

∞
∑

k=0

∑

R

1

k!
[dR(Sk)]

2 ak
1 . (3.9)

In this case the only conjugacy class that contributes is the trivial or identity class consisting

of k one cycles. The character of this class is nothing but the dimension dR(Sk) of the

representation R for the permutation group Sk.

It is clear that the above method of solution can be straightforwardly generalised to the

matrix models (2.6) which describe the perturbative gauge theory at finite temperature.

We can similarly expand the exponential and carry out the unitary integrals after using

6Recall that a conjugacy class of the permutation group can be labeled by a partition ~k = (k1, k2, . . .).
~k is an infinite dimensional vector with kj being the number of cycles of length j.

7The invariant Haar measure [dU ] that appears here has been normalized such that
R

[dU ] = 1.
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the Frobenius relations. The general answer for the finite N matrix model can once again

be explicitly written though the actual expressions will now be more cumbersome. As a

special case consider the (a, b) model (2.9).

Z(a1, b1) =

∫

[dU ] exp

[

a1TrUTrU † +
b1

N2

(

TrUTrU †
)2
]

. (3.10)

Expanding the exponential as before and using a similar logic as before, we can write the

partition function as,

Z(a1, b1) =

∞
∑

k=0

k/2
∑

l=0

ak−2l
1 bl

1k!

N2ll!(k − 2l)!

∑

R

d2
R(Sk)

k!
. (3.11)

For the more general case of models eq. (2.7) with

Seff(U) =

∞
∑

k=1

αk

N2(k−1)
(TrUTrU †)k . (3.12)

We can again go through the same steps to obtain

Z({αi}) =
∞
∑

{kl=0}

∏

l

(

αkl

l

N2kl(l−1)kl!

)

∑

R

d2
R(SK) ; K =

∑

l=1

lkl. (3.13)

These are the cases whose large N limit we will be analysing in some detail in what follows.

Finally, we should remark that matrix models of the form eq. (3.1) also appear in the

counting of BPS states [32]. In fact, it is not difficult to use certain standard identities for

the completeness of group characters to evaluate the answer eq. (3.7) in the case where

an = an
1 . One reproduces the usual generating function for the half BPS states given

in [32]. It would be interesting to use the exact answer for finite N to evaluate some of the

partition functions/indices of interest in N = 4 Super Yang-Mills theory [32].

4. Taking the large N limit

We start by analysing the large N behaviour of the exact answer (for the free gauge the-

ory) given in (3.7).8 We should be able to see the large N phase transition that was

obtained from the analysis of the eigenvalue density (reviewed in section 2). We can see,

in general, from the form of the solution that, in the large N limit, there is likely to be

a dominant representation contributing in the sum over representations. Essentially, this

can be viewed as a statistical mechanical system in which the group characters behave like

an entropy contribution (roughly favouring representations with a large number of boxes

in the Young Tableaux ). And the ai are the Boltzmann suppression factors which dis-

favour representations with a large number of boxes. The balance between them leads to a

dominant representation at any particular value of the temperature. A large N phase tran-

sition would occur when the nature of this dominant representation undergoes a qualitative

8We will generalise to the interacting case in section 4.4
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change as one varies the temperature. As mentioned earlier, the Douglas-Kazakov [12, 14]

phase transition and its generalisations in 2d Yang-Mills theory can be understood this

way. We will now see all these features explicitly in our matrix models, specialising for

simplicity to the special case where only a1 6= 0. As mentioned in section 2.2, this case

captures all the essential physics of the finite temperature theory.

In the special case where an = 0 for n > 1, the exact answer is given by eq. (3.9)

Z(β) =
∞
∑

k=0

∑

R

1

k!
[dR(Sk)]

2 ak
1 . (4.1)

To proceed, we will write the sum over representations of U(N) in terms of the number of

boxes of the corresponding Young Tableaux

∑

R

→
∞
∑

k=1

∞
∑

{ni}=0

δ
(

ΣN
i=1ni − k

)

with n1 ≥ n2 ≥ ... ≥ nN ≥ 0 , (4.2)

where ni is the number of boxes in the ith row of Young Tableaux (there being only N rows

for a representation of U(N)). Also k is the total number of boxes in the representation.

Therefore the partition function reads as

Z(β) =
∞
∑

k=0

∞
∑

{ni}=0

1

k!
[dR(Sk)]

2 ak
1 δ(ΣN

i=1ni − k) . (4.3)

The dimension dR(Sk) is given by the Frobenius-Weyl formula [19]

dR(Sk) =
k!

h1!h2! . . . hN !

∏

i<j

(hi − hj) , (4.4)

where,

hi = ni + N − i , (4.5)

with

h1 > h2 > . . . > hN ≥ 0 . (4.6)

4.1 The continuum limit and saddlepoint equations

In the N → ∞ limit we can define, following Douglas and Kazakov [12], continuous func-

tions which describes each young tableaux

n(x) =
ni

N
, h(x) =

hi

N
, x =

i

N
, (4.7)

where x ∈ [0, 1]. The function n(x) or equivalently h(x) captures the profile of the large N

Young tableaux. In this limit eq. (4.5) can be written as,

h(x) = n(x) + 1 − x . (4.8)
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Note that the condition n1 ≥ n2 ≥ . . . ≥ nN implies a strict monotonicity for h(x)

h(x) > h(y) for y > x. (4.9)

In this limit the total number of boxes in a Young Tableaux is given by,

k =

N
∑

i=1

ni → N2

(
∫ 1

0
dx [h(x) + x − 1]

)

= N2

(
∫ 1

0
dxh(x) − 1

2

)

. (4.10)

Since k′ ≡
∫ 1
0 dxh(x)− 1

2 will generically be O(1), we see that the number of boxes k = N2k′,

in a generic representation, is of the order of N2 in this limit.

The partition function eq. (4.3) can be written, using eq. (4.4), as

Z(β) =
∑

{hi}
exp



ln(k!) + ln a1 +
∑

i6=j

ln |hi − hj | − 2
∑

i

ln(hi!)



 . (4.11)

In the large N limit, using Stirling’s approximation for the factorials and eq. (4.10), the

partition function can be expressed as

Z =

∫

[dh(x)]e−N2Seff , (4.12)

where,

− Seff =

∫ 1

0
dx −
∫ 1

0
dy ln |h(x) − h(y)|

−2

∫ 1

0
dxh(x) ln h(x) + k′ ln

(

a1k
′)+ k′ + 1 . (4.13)

Recall that k′ ≡
∫ 1
0 dxh(x) − 1

2 .

Now we are in a position to carry out a saddlepoint analysis for the effective action

functional Seff[h(x)] (4.13). Varying Seff with respect to h(x), we obtain the saddlepoint

equation,

−
∫ 1

0

dy

h(x) − h(y)
= ln h(x) − 1

2
ln
[

a1k
′] . (4.14)

Introduce, again following [12], the density of boxes in the Young Tableaux u(h) defined

by

u(h) = −∂x(h)

∂h
. (4.15)

By definition, it obeys the normalisation

∫ hU

hL

dhu(h) = 1, (4.16)

where the interval of support [hL, hU ] of u(h) is specified by hL = h(1) and hU = h(0).

From the monotonicity of h(x) eq. (4.9), it follows that u(h) obeys the constraint

u(h) ≤ 1 . (4.17)
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In terms of the density u(h), the saddle-equation (4.14) can be written in the more

familiar form,

−
∫ hU

hL

dh′ u(h′)
h − h′ = ln[h] − 1

2
ln
[

a1k
′] = ln

[

h

ξ

]

(4.18)

where ξ2 ≡ a1k
′. Note that the parameter ξ involves k′ given by

k′ =

∫ 1

0
dxh(x) − 1

2
=

∫

hu(h)dh − 1

2
(4.19)

which in turns depends on the (first moment of the) density u(h). We will therefore have

to solve the equation self-consistently.

4.2 The saddlepoint densities

The solution to the integral equation (4.18) for the Young Tableaux density u(h) is obtained

along similar lines to the usual solution for the eigenvalue density. The main point to

additionally take into account is the presence of the constraint eq. (4.17). Thus we will

find that the solutions to (4.18) are of two different kinds depending on the value of the

parameter ξ.

Solution class 1:

0 ≤ u(h) < 1; h ∈ [q, p] . (4.20)

A typical representation corresponding to such a Young Tableaux density is plotted in

figure 1. There are always a nonzero number of boxes in each row.

Solution class 2:

u(h) = 1 h ∈ [0, q]

= ũ(h) h ∈ [q, p] (4.21)

with 0 ≤ ũ(h) < 1. A typical young tableau for a solution of this class has been plotted in

figure 1. The representations are such that a finite fraction of the rows are empty.

As we vary ξ, the constraint (4.17) will come into play and one will have to switch from

one of the branches to the other. At this point, as we will see explicitly, there will be a

non-analyticity, for example in the free energy and we will have a large N phase transition.

We will now solve the saddle-equation in the conventional way9 by introducing the

resolvent H(h) defined by

H(h) =

∫ hU

hL

dh′ u(h′)
h − h′ . (4.22)

The resolvent has the following properties,

(i) It is analytic in the complex h plane with a branch cut along the positive real interval

(hL, hU ).

(ii) It is real for real positive h outside the interval.

9For a recent review see [21].

– 13 –



J
H
E
P
0
3
(
2
0
0
8
)
0
1
1

Solution Class 1                                             Solution Class 2

n     (x=0)

n     (x=1)

   1

   N

Figure 1: Young Tableaux

(iii) H(h) ∼ 1
h + (k′ + 1

2 ) 1
h2 (as h → ∞). This follows from the moment expansion of

the resolvent at large h and using eq. (4.19).

(iv) H(h + iǫ) + H(h − iǫ) = 2 ln
[

h
ξ

]

for real h .

(v) u(h) = − 1
2πi [H(h + iǫ) − H(h − iǫ)] for h ∈ [q, p].

One can therefore solve for H(h) in terms of its real part by writing it as a contour

integral. In fact, the equations we need to solve are very close to the equations that arise

in a class of matrix models studied by Kazakov, Staudacher and Wynter [13] (see also [26]

for the solution of a similar equation). We now exhibit this solution in both the classes

mentioned above.

4.2.1 Solution class 1

In branch 1 using the ansatz (4.20) the saddle equation becomes,

−
∫ p

q
dh′ u(h′)

h − h′ = ln

[

h

ξ

]

, h ∈ [q , p]. (4.23)

The resolvent (eq. (4.22)) in this branch is given by (see [13, 21] for a general discussion),

H(h) = −
√

(h − p) (h − q)

∮

ds

2πi

ln (s/ξ)

(s − h)
√

(s − p) (s − q)
. (4.24)

The contour of integration is shown in figure 2. Carrying out the contour integration we

obtain the resolvent for class 1,

H(h) = ln

[

2 h2 − (
√

p −√
q)2 h + 2 q p − 2 (h +

√
q p)

√

(h − p)(h − q)

ξ (
√

p +
√

q)2

]

. (4.25)
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Figure 2: Contour for Solution class 1

Figure 3: Plot of u(h) vs. h for Solution Class 1. The value of ξ increases from 0.5 as one goes

from the leftmost graph to the right.

Using this, we can readily find the discontinuity and thus the Young Tableaux density

function u(h),

u(h) =
1

π
cos−1

[

h − 1

2 ξ
+

(

ξ − 1
2

)2

2 ξ h

]

for h ∈ [q, p]

=
2

π
cos−1

[

h + ξ − 1/2

2
√

ξh

]

. (4.26)

Figure 3 shows the plot of u(h) vs. h for this solution class.

The support of u(h) as well as k′ is determined by expanding H(h) for large h and

matching with property (iii) of H(h) listed above.

H(h → ∞) ∼ ln

[

(
√

q +
√

p)2

4 ξ

]

+
(
√

p −√
q)2

2

1

h
+

(√
qp +

3

4

)

1

h2
. (4.27)
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We therefore obtain

√
q =

√

ξ − 1√
2
, (4.28)

√
p =

√

ξ +
1√
2

(4.29)

and

k′ =
√

qp +
1

4
(4.30)

which implies

a1 =
4ξ2

4ξ − 1
(4.31)

using the definition ξ2 = a1k
′. Since q is a real positive quantity, eq. (4.28) implies that

this solution branch exists for ξ ≥ 1
2 . From eq. (4.31), we therefore conclude that this class

of solutions only exist for a1 ≥ 1.

4.2.2 Solution class 2

Using the ansatz (4.21) the saddle equation becomes,

−
∫ p

q
dh′ ũ(h′)

h − h′ = ln

[

h

ξ

]

− ln

[

h

h − q

]

where, h ∈ [q, p] . (4.32)

The full resolvent H(h) now takes the form,

H(h) = ln

[

h

h − q

]

+

∫ p

q
dh′ ũ(h′)

h − h′ . (4.33)

H(h) can once again be written as a contour integral,

H(h) = ln

[

h

h − q

]

−
√

(h − p) (h − q)

∮

ds

2πi

ln (s/ξ) − ln [s/(s − q)]

(s − h)
√

(s − p) (s − q)
. (4.34)

The contour is shown in figure 4. Carrying out the integration gives the answer

H(h) = ln

[

h

ξ

]

+ ln

[√
p −√

q
√

p +
√

q

]

+ ln

[

h +
√

qp −
√

(h − 1)2 − 4ξ2

h −√
qp +

√

(h − 1)2 − 4ξ2

]

. (4.35)

Hence, the Young Tableaux density is given by,

ũ(h) =
1

π
cos−1

[

h − 1

2ξ

]

. (4.36)

Figure 5 shows the plot of ũ(h) vs. h for this solution class.

As before, expanding H(h) for large h we find the values of q, p and k′ as follows,

q = 1 − 2ξ , (4.37)

p = 1 + 2ξ (4.38)
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Figure 4: Contour for Solution Class 2

Figure 5: Plot of ũ(h) vs. h for Solution Class 2. The value of ξ decrease from 0.5 to 0 as one

goes from the rightmost to the leftmost graph.

and

k′ = ξ2 . (4.39)

From the definition a1k
′ = ξ2 we obtain

either ξ = 0

or, a1 = 1. (4.40)

The former implies the uniform distribution

u(h) = 1 h ∈ [0, 1]. (4.41)

This is therefore a saddlepoint for any value of a1. This is in fact the density corresponding

to the trivial representation ni = 0.

The latter corresponds to a family of saddlepoints labelled by ξ which exists only at

a1 = 1. From eq. (4.37) it is clear that this family exists for ξ ≤ 1/2.
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To summarise, we see that there are three different saddlepoint configurations of Young

Tableau densities.

• The trivial representation corresponding to the uniform distribution for u(h),

eq. (4.41). This exists for any value of a1, i.e. for any temperature.

• The continuous family eq. (4.36) which exists only for a1 = 1. Here a finite fraction

of the rows of the Young Tableau are empty.

• The representation eq. (4.26) which exists only for a1 > 1, i.e. only for high enough

temperature. Now all the N rows of the Young Tableaux are filled.

We see that the saddlepoints are exactly in correspondence with the saddlepoints of

the eigenvalue density, as summarised in section 2.2. We will now indeed verify that the

large N free energy of these saddle points is also exactly the same as that seen from the

eigenvalue density analysis.

4.3 The free energy of the free theory

In the large N limit the free energy of the partition function eq. (4.12) is given by,

F = −T ln Z = N2TS0
eff

. (4.42)

where S0
eff

is the value of effective action at the (dominant) saddlepoint. The effective action

given in (4.13) can be re-expressed as a functional of u(h)

−Seff =

∫ hU

hL

dh−
∫ hU

hL

dh′u(h)u(h′) ln |h − h′| − 2

∫ hU

hL

dh u(h) h ln[h] + k′ + 1 + k′ ln[a1k
′].

(4.43)

We only need to evaluate this functional on the different saddlepoint configurations we

have found. In evaluating the expressions it is useful to use the corresponding saddlepoint

equations to eliminate the quadratic term in u(h) in the effective action. We thus obtain:

• Solution class 1: Using the saddle equation eq. (4.23), Seff becomes

−S0
eff

= −
∫ p

q
dhu(h)h ln h +

(

ξ − 3

4

)

ln[ξ] +
1

2
+ C1 , (4.44)

where the constant C1 is given by,

C1 =
1

2
ln[ξ/2] + ξ − 1

2
. (4.45)

Evaluating the integral (details can be found in appendix A) gives finally for the

effective action,

F = N2TS0
eff

= −N2T

[

ξ − 1

2
ln(2ξ) − 1

2

]

≤ 0. (4.46)

This exactly agrees with the free energy computed in [8] for the deconfined phase

saddlepoint which was quoted in section 2.2.
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• Solution class 2:

Here the free energy is easy to compute since we have a continuous family labelled by

ξ which are all saddlepoints and thus must have the same free energy when a1 = 1.

In particular the constant configuration eq. (4.41) is a limiting member of this family

for which the effective action is readily computed to be zero. Therefore the entire

family of saddlepoints in eq. (4.36) must have zero free energy. This is explicitly

verified in appendix A. Once again this matches with the results of the eigenvalue

analysis for the confined phase saddlepoint.

We see from this that there is an exchange of dominance of the saddle points at a1 ≥ 1,

where one gets a new saddlepoint eq. (4.26), which has less free energy compared to the

uniform density saddlepoint that exists for all values of a1. Therefore as the temperature

increases we get a transition when the saddlepoint switches giving rise to the confinement-

deconfinement transition. We see that this is nothing bu the analogue of the Douglas-

Kazakov transition in our approach. We have thus reproduced the usual saddlepoints as

well as the phase diagram of the zero coupling Yang-Mills theory from our method of taking

the large N limit of the exact solution.

4.4 Extension to non-zero coupling

The general interacting unitary matrix model eq. (2.6) for perturbative gauge theory can

also be solved exactly using the technique of section 3 and a large N limit can then be taken

along the lines described in this section. However, the analysis is going to be technically

much more involved. But as described in section 2, the essentials of the physics is in any

case captured by models involving only TrU . In particular, the (a, b) model eq. (2.9) already

does a good job in getting the detailed form of the Hawking-Page phase diagram [10]. Here

we will sketch how its exact solution eq. (3.11) shows all the features described in section 2.2

when we take the large N limit as described in this section.

Let’s write the answer eq. (3.11) as

Z(a1, b1) =

∞
∑

k=0

k/2
∑

l=0

ak−2l
1 bl

1k!

N2ll!(k − 2l)!

∑

{ni}

d2
{ni}(Sk)

k!
δ(k − Σini)

=

∞
∑

k=0

f(k)
∑

{ni}

d2
{ni}(Sk)

k!
δ(k − Σini) , (4.47)

where, as usual, {ni} label the number of boxes in the Young Tableaux and

f(k) =

k/2
∑

l=0

ak−2l
1 bl

1k!

N2ll!(k − 2l)!
. (4.48)

Since the total number of boxes k is of order N2, we can replace the sum in eq. (4.48) by

the saddlepoint value. Doing this gives

f(k) =
k

2

(

a1

1 − x

)k

e−
kx
2 ≡ k

2
ãk

1 (4.49)
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where x is determined by the equation

x

(1 − x)2
=

2b1k
′

a2
1

(4.50)

with k = N2k′. Therefore the partition function

Z(a1, b1) =
∑

{ni}

k

2
ãk

1

d2
{ni}(Sk)

k!
, (4.51)

(with k =
∑

i ni) takes essentially the same form as eq. (4.3) except that we have ã1 instead

of a1.
10

We can now take the large N limit as before to obtain

Z(a1, b1) =

∫

[dh(x)] e−N2Seff , (4.52)

where Seff is the same as in eq. (4.13) with the replacement of a1 by ã1.

Since ã1 depends on k′ or h(x) (see (4.49) and below), the saddle equations are modified

a bit. Taking into account this additional dependence on h(x), the saddle equation becomes,

−
∫ hU

hL

dh′ u(h′)
h − h′ = ln

[

h(x)

ξ̃

]

where ξ̃2 = ã1k
′e

x
2 . (4.53)

Since the saddle equations are of the same form as eq. (4.18), (with the replacement

of ξ by ξ̃) the saddlepoint configurations for the Young Tableaux density are also the same

in form. Namely, we obtain the three different configurations of section 4.2. In fact, we

can redo this analysis for the class of models eq. (2.7) for which the exact solution was

given in eq. (3.13). This is performed in appendix B. We see from the analysis there that

the saddlepoint equations give once again the same saddlepoint configurations. Moreover,

we obtain the same Hartree-Fock equations as eq. (2.21) and eq. (2.22). Thus the phase

diagram turns out to be the same as that given by the eigenvalue density analysis. For

instance in the case of the (a, b) model we find

• A low temperature saddlepoint which is characterised by ξ̃ = 0 which is the uniform

distribution corresponding to thermal AdS. This has zero free energy.

• Then there is a saddlepoint of the form eq. (4.36) when ξ̃2 = k′ i.e. ã1e
x
2 = 1 and

ξ̃ ≤ 1
2 . This implies that

ξ̃2 =
1 − a1

2b1
≤ 1

4
. (4.54)

This is actually the unstable saddlepoint corresponding to the small black hole (in

the phase where it is to be viewed as an excited string state) and has positive free

energy

F = N2T
(1 − a1)

2

4b1
. (4.55)

This saddlepoint exists in a temperature range Tc ≤ T ≤ TH .

10The extra multiplicative factor of k
2

plays only a subleading role in the large N limit.
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• Finally there is the saddlepoint of the form eq. (4.26) which obeys

a1

1 − x
=

4ξ̃2

4ξ̃ − 1

and k′ = ξ̃ − 1

4
. (4.56)

The two solutions to this equation give rise to the BBH as well as the SBH (in the

actual black hole regime). The BBH solution exists for all temperatures greater than

the minimum T0 for which this solution exists. While the (gapped) SBH solution

exists in the interval To ≤ T ≤ Tc. At Tc which corresponds to ξ̃ = 1
2 , this solution

goes over into the ungapped solution.11 The free energy in this phase is given by,

F = −N2T

[

ξ̃ − 1

2
ln[2ξ̃] − 1

2
− b1

(

1 − 1

4ξ̃

)4
]

. (4.57)

One of the points to note in our analysis is that the saddle configurations for u(h) are

all of the same form as in the free theory. It is only that ξ is a different function of the

temperature. This is a mirror of the same phenomenon in the eigenvalue density analysis

that the functional form of the saddle configurations of σ(θ) are not changed as one turns

on the perturbative coupling. This robust character of the saddle point configurations is a

positive indication in trying to extract universal features from these results.

Finally, we should mention that the extension to non-zero charges also follows in a

straightforward way. As argued in [22], the effective matrix model has a logarithmic term

which results in there no longer being a uniform eigenvalue density saddle point corre-

sponding to thermal AdS. In our approach, as argued in appendix B for a general matrix

model of the form eq. (2.6), we find the same saddle point equations as in the eigenvalue

analysis and thus the same phase diagram.

5. Free fermionic phase space description

5.1 Relation between the Young Tableauxand eigenvalue distributions

Our analysis of the exact answer has been very different from the usual eigenvalue anal-

ysis reviewed in section 2. It turns out, rather remarkably, that there is nevertheless, a

simple relationship between the saddlepoint configurations u(h), in both the high and low

temperature phases, with the corresponding saddlepoint eigenvalue densities. We will now

describe this relation.

Consider first the low temperature saddlepoint u(h) = 1. The corresponding saddle-

point for the eigenvalue density is σ(θ) = 1
2π . From the graph of these two distributions,

11Therefore the GWW transition identified in [10] with the black hole-string transition is the same as

the Douglas-Kazakov (DK) transition in our approach. A similar thing was seen in [14] where the DK

transition of 2d Yang-Mills was mapped onto a GWW-like gapped to ungapped transition in terms of the

eigenvalues of Wilson loops.
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we notice that they are functional inverses of each other (flip the horizontal and vertical

axes of one to get the other). In other words, we can make the identification

u =
θ

π
h

2π
= σ(θ) . (5.1)

This case may seem a little trivial, so let us consider the family of saddlepoints that

correspond to the unstable small black hole eq. (4.36)

u(h) =
1

π
cos−1

[

h − 1

2ξ

]

h ∈ [q, p]; 2ξ ≤ 1 . (5.2)

together with u(h) = 1 for h ∈ [0, p]. Applying relations (5.1) to this case, we get immedi-

ately σ(θ) = 1
2π (1 + 2ξ cos θ) which is the same as eq. (2.16). Thus the identification holds

in this case. The two distributions are again functional inverses of each other.12

We finally come to the non-trivial saddlepoint corresponding to the big black hole

eq. (4.26)

u(h) =
1

π
cos−1

[

h − 1

2ξ
+

(

ξ − 1
2

)2

2ξ h

]

h ∈ [q, p] . (5.3)

In this case, we have to be more careful. We see from the plot of u(h) that the

functional inverse is ambiguous. For a given value of u, there are two values of h. This can

be directly seen from the fact that eq. (5.3) implies the quadratic relation

h2 − [1 + 2ξ cos (πu(h))]h +

(

ξ − 1

2

)2

= 0 . (5.4)

If we take the difference between the two solutions h+ and h−, we obtain

h+ − h− = 2
√

2ξ

√

1 − 2ξsin2
(πu

2

)

cos
(πu

2

)

. (5.5)

We see that if we define

sin2 θ0

2
=

1

2ξ
(5.6)

and modify the identifications eq. (5.1) to

u =
θ

π
h+ − h−

2π
= σ(θ) , (5.7)

then we obtain precisely the eigenvalue distribution in eq. (2.17)

σ(θ) =
1

πsin2
(

θ0

2

)

√

sin2

(

θ0

2

)

− sin2

(

θ

2

)

cos

(

θ

2

)

. (5.8)

12A similar relation was also found in the case of 2d Yang-Mills theory on the cylinder [14] though a

phase space interpretation was not made (see also [15]).
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5.2 Fermionic phase space

The relations eq. (5.1) and (5.7) between the saddlepoint eigenvalue densities and the

young tableau densities have a very natural interpretation in terms of a free fermionic

picture. This fermionic picture is suggested by the fact that the eigenvalues of the holonomy

matrix behave like fermions. At the same time, the representations of U(N) also have an

interpretation in the language of non-interacting fermions with the number of boxes of the

Young tableaux being like the momentum (See [25], for example). This suggests that the

eigenvalue density is like a position distribution while the Young Tableau density is like a

momentum distribution.13 Therefore, it is natural to consider a phase space distribution

which gives rise to these individual distributions. In the classical (i.e. large N) limit, we

can describe this system of N fermions in terms of an incompressible fluid occupying a

region of the two dimensional phase space (see [31] for a recent overview and references to

the large literature on the subject).

Therefore let us assume that the saddlepoints are all described by some configuration

in phase space, i.e. some region R of the two dimensional plane such that the phase space

density ρ(h, θ) obeys

ρ(h, θ) =
1

2π
; (h, θ) ∈ R

= 0 ; otherwise. (5.9)

We can then define the partial densities14

u(h) =

∫ π

−π
ρ(h, θ)dθ

σ(θ) =

∫ ∞

0
ρ(h, θ)dh (5.10)

where the first integral is at constant h and the second at constant θ. Note that

∫

ρ(h, θ)dhdθ = 1 . (5.11)

Let us now take the boundary of the region R to be defined by a curve15 C(h, θ) = 0.We

now see that there can be different situations depending on whether the solution h = h(θ)

is single valued or multiple valued. Thus for a single valued h = h(θ), we see from eqs. (5.9)

and (5.10) that the identification eq. (5.1) follows. When we have multiple values for the

solution h(θ) then the identification between the different densities is a little more non-

trivial. For instance, when we have two solutions h+(θ) and h−(θ) with h+ ≥ h−, then it

13In fact, u(h) can be viewed as a plot of the fermi distribution of momenta. The uniform density

saddlepoint, for instance, corresponds to a fully filled fermi sphere.
14The measure factor that appears in eq. (5.10) and eq. (5.11) suggests that h is related to the usual

polar coordinate r by h = r2

2
. This redefinition is quite natural from the point of view of free fermionic

phase space where a similar change of variables is made. See [31] and [3].
15The symmetry of the effective action under U → U† implies the region is symmetric under θ → −θ.
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Figure 6: Phase space distribution for Thermal AdS: ξ =0

Figure 7: Phase space distribution for SBH in ungapped phase: ξ =0.4

follows from eqs. (5.9), (5.10) that the relation between the young tableaux density and the

eigenvalue densities is that in eq. (5.7). Thus we have an interpretation for the relationships

that we observed in the previous subsection.

We therefore see that the large N saddlepoints of the gauge theory effective action,

which correspond to the Thermal AdS, the small black hole and the big black hole can

each be thought of in terms of a particular configuration in a free fermionic phase space.

There is a particular shape associated to each of them. This shape, which is determined
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Figure 8: Phase space distribution at GWW transition point: ξ = 0.5

by the curve C(h, θ) = 0, can, in general, only be inferred from the knowledge of both σ(θ)

and u(h). For the different saddlepoints that we have discussed, the particular shapes are

given in figures 6–9. We have plotted the regions in polar coordinates (r, θ) after making

the identification in footnote 14.

The shape corresponding to thermal AdS is a disk h(θ) = 1 (figure 6) which is exactly

like that in the Lin, Lunin, Maldacena description for global AdS. For the big black hole

we have a shape figure 9 which corresponds to a double valued h(θ). The equation of the

curve is given by, eq. (5.4) with πu(h) replaced by θ. Note that the origin of phase space

is not contained in this region. For the unstable saddlepoint (SBH) we have the black hole

regime where the shape is qualitatively the same as the BBH, except that it is closer to

the origin. At the temperature Tc, the shape continuously changes to that in figure 8. The

excited string state beyond this transition occupies a region which includes the origin given

by the curve h(θ) = 1 + 2ξ cos θ (figure 7). We observe that the shapes are qualitatively of

two different kinds with the limiting shape h = r2

2 = (1 + cos θ) at the GWW transition

point that separates the two classes. Note that the boundary of the limiting configuration

is a separatrix between two different kinds of trajectories in the fermi sea.16

6. Conclusions

We have studied thermal gauge theory by evaluating its partition function at finite N . Tak-

ing the large N limit of the full answer gives us a new perspective on some already known

16We thank S. Wadia for useful discussions on this point.
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Figure 9: Phase space distribution for SBH (in the gapped phase)/BBH

facts about the phase diagram of the gauge theory. The various phases and the transitions

between them can be viewed in terms of different dominant representations of U(N) that

contribute to the partition function. They are obtained as saddlepoints of an effective func-

tional, S[u(h)] (like that given in eq. (4.43)) of a young tableau density. These representa-

tions can be viewed as excitations of a one dimensional fermi sea whose ground state corre-

sponds to (thermal) AdS. In fact, a complete picture emerges when we combine the saddle-

point representation u(h) with the saddlepoint σ(θ) of the eigenvalue density analysis. One

obtains a phase space picture which neatly combines both these answers into a single two

dimensional region with uniform density ρ(h, θ). An important point to emphasise is that

in general, one needs both u(h) and σ(θ) to obtain the curve C(h, θ) = 0 which delineates

the region R of phase space which is occupied. In a way, as we have seen, u(h) is more basic

since it contains the information to reconstruct σ(θ) through eq. (5.7) but not vice versa.

This suggests that it is more natural to look for a description of the dynamics directly

in terms of the phase space density ρ(h, θ). In particular, it would be nice to find a phase

space functional S[ρ(h, θ)] which reduces to the two different functionals S[u(h)] and to

S[σ(θ)] on appropriately integrating out. It would seem that the formalism reviewed for

example in [31], would be the appropriate one.

Such a formulation is likely to help in moving towards the goal of reconstructing the

local theory in the bulk with all its redundancies. Note that the configurations we are

considering in the thermal history are all S3 invariant. Thus the only non-trivial directions

in the bulk are those of the thermal S1 and the radial direction. It is tempting to identify

these two directions with the phase space directions of the fermions. In fact, the eigenval-
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ues of the fermions can be viewed as positions on the T-dual to the thermal circle and the

momenta should correspond to the radial direction as per the usual AdS/CFT correspon-

dence. As a first step it would be nice to see how the topology of the bulk is encoded in

the geometry of the phase space regions corresponding to the different saddlepoints. Note

that we argued that the shape of the regions is fairly robust against coupling effects and

so should be telling us something generic about the bulk geometries even when they are

subject to all kinds of α
′
corrections.

It may seem a little confusing to talk about phase space without talking about time.

But since we are describing euclidean gravity configurations in terms of euclidean gauge

theory, time does not enter directly. A closely similar situation arises in the study of

Euclidean 2d Yang-Mills theory on the torus. Its free fermion representation was inter-

preted [27] in terms of contributions from different ”baby universe” saddle points of the

Euclidean gravity partition function of the dual geometry (in this case a 4d extremal black

hole in an N = 2 theory) [28].

As mentioned in the introduction, the LLM scenario was one of the inspirations for

many of these ideas. It would be nice to see if there was a concrete connection to be made

between those cases and those studied here. At first sight they seem to be very different.

However one possible link between them is that unitary matrix models very similar to those

studied here give the partition functions that count BPS states. In fact, it would be nice

to apply our finite N answers for these models to these countings.17

Another interesting direction to generalise might be to the gauge theory on spatial

sections which are for instance, S1 × R2 rather than S3. We now have a matrix quantum

mechanics [29]. Toy matrix models for this case have been studied for example in [30]. In

these cases a free fermionic description has been employed to study the matrix quantum

mechanics.

Acknowledgments

We benefitted very much from conversations with J. R. David, A. Dhar, S. Minwalla, K. S.

Narain and S. Wadia. We also appreciate helpful comments by O. Aharony, S. Minwalla

and S. Wadia on the draft. One of us (R.G.) also acknowledges the hospitality of IFT, Sao

Paulo, where a portion of this work was completed. We also thank the participants of the

ISM07 workshop on string theory for their comments. Finally, we are both beholden to

the people of India for the unstinting support lent to fundamental research.

A. Details of the evaluation of the free energy

A.1 Free Energy for solution class 1

The effective action is given by

−Seff =

∫ hU

hL

dh−
∫ hU

hL

dh′u(h)u(h′) ln |h − h′| − 2

∫ hU

hL

dh u(h) h ln(h) + k′ + 1 + k′ ln(a1k
′)

(A.1)

17We thank S. Minwalla for this suggestion.
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For solution class 1, hL = q and hU = p. u(h) has support only for q ≤ h ≤ p.

Using the following saddle equation of motion we can replace the double integration

by a single integration,

−
∫ p

q
dh′ ln[h − h′] u(h′) = h ln

[

h

ξ

]

− h + C1 . (A.2)

Hence the effective action becomes,

−S0
eff

= −
∫ p

q
dhhu(h) ln[h] + ξ ln[ξ] − 3

4
ln[ξ] +

1

2
+ C1 . (A.3)

The constant C1 can be evaluated from the equation (A.2) at h = p.

C1 = p + p ln

[

p

ξ

]

+

∫ p

q
dh′ ln[p − h′] u(h′) . (A.4)

After some algebra we find,

∫ p

q
dhhu(h) ln[h] = ξ ln[ξ] +

1

4
ln[ξ] +

1

2
(A.5)

and

C1 =
1

2
ln[ξ/2] + ξ − 1

2
. (A.6)

Finally we get,

S0
eff

= ln[ξ] − C1

= −
[

ξ − 1

2
ln[2ξ] − 1

2

]

. (A.7)

A.2 Free energy for solution class 2

The effective action for the solutions in class 2 is given by,

−Seff =

∫ p

0
dh−
∫ p

0
dh′ u(h)u(h′) ln |h − h′| − 2

∫ p

0
dhu(h)h ln(h)

+k′ + 1 + k′ ln(a1k
′). (A.8)

Breaking the h integration into two pieces, we can write the effective action as,

− Seff =

∫ q

0
dh−
∫ p

0
dh′u(h)u(h′) ln |h − h′| +

∫ p

q
dh−
∫ q

0
dh′u(h)u(h′) ln |h − h′|

−2

∫ p

0
dhu(h)h ln(h) + k′ + 1 + k′ ln(a1k

′). (A.9)

In the second term on the right hand side, one can use the saddle equation eq. (4.18) with

hL = 0 and hU = p. This gives

∫ p

q
dh−
∫ p

0
dh′u(h)u(h′) ln |h − h′| =

∫ p

q
dhu(h) (h ln[h] − h ln[ξ] − h − C2) , (A.10)
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where the constant C2 is given by,

C2 = p − p ln

[

p

ξ

]

+ −
∫ p

0
dh′ u(h′) ln |h − h′| . (A.11)

After some algebra we get,

C2 = ln[ξ] . (A.12)

Therefore
∫ p

q
dh−
∫ p

0
dh′u(h)u(h′) ln |h − h′| =

∫ p

q
dhhu(h) ln[h]

−(1 + ln[ξ])

(

k′ +
1

2
− q2

2

)

+ C2(1 − q). (A.13)

Calculating the first term on the right hand side of eq. (A.9) we get,

∫ q

0
dh−
∫ p

0
dh′u(h)u(h′) ln |h − h′| = −q2

2
+ q2 ln[q] +

∫ p

q
dh′h′u(h′) ln[h′]

−q +

∫ p

q
dh′u(h′)(q − h′) ln[h′ − q] . (A.14)

Calculating other terms in on the right hand side of eq. (A.9) we finally see that the on-shell

effective action in second branch vanishes. Hence the free energy in this branch is zero.

B. A class of general matrix model actions

In this appendix we will generalize the result of section 4 to a generic effective action which

is a function of TrUTrU †. We will expand the effective action in a power series in x, where

x = TrUTrU †.

−Seff =
∑

n=1

anxn

N2(n−1)
= N2

∑

n=1

anxn

N2n
. (B.1)

Using this form of Seff, we can write

e−Seff =

m
∏

i

∞
∑

ki=0

(ai)
ki x(

P∞
i=1

iki)

ki!N2(i−1)
. (B.2)

The partition function is given by,

Z =

∫

[dU ]e−Seff , (B.3)

can be evaluated using the methods of section 3 and section 4,

Z =
∞
∑

{ki}=0

ak1

1 · ·akm
m

k1! · ·km!







∑

R
d2

R(Sk)

N
2

m
P

l=1

kl(l−1)






, k =

∑

l=1

lkl . (B.4)
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Define,

f(k) =

∞
∑

{ki}=0

ak1

1 · ·akm
m ·

k1! · ·km!·
k!

N
2

P

l=1

kl(l−1)

=

∞
∑

{ki}=0

eG({ki}) , (B.5)

where G({ki}) is given by,

G({ki}) =
∑

i=1

ki ln[ai] −
m
∑

i=1

(ki ln[ki] − ki) + k ln[k] − k − 2

m
∑

i=1

ki(i − 1) ln[N ]. (B.6)

In the large N limit the partition function receives its dominant contribution only from

the extremum value of G. Minimising G with respect to ki, remembering to introduce a

Lagrange multiplier for the constraint
∑

i=1
iki = k, we get,

k′
i = aiβ

i , (B.7)

where k′
i = ki

N2 and β = e−(α+2 lnN) where α is the Lagrange multiplier enforcing the

constraint.

β is determined through the following relation,

k′ =

∞
∑

i=1

ik′
i

=
∑

i=1

iaiβ
i

= βS̃′(β) , (B.8)

where S̃′(β) is given by,

S̃(β) =
∑

i=1

aiβ
i . (B.9)

Once we fix the undetermined multiplier, then G can be written as,

G

N2
= k′ ln[k′] − k′ − k′ ln[β] + S̃(β) . (B.10)

Hence f(k) is given (upto multiplicative factors which are unimportant in the large N

limit).

f(k) ∝ e
N2(k′ ln[ k′

β
]−1)

eN2S̃(β) . (B.11)

So the partition function can be written as,

Z =
∞
∑

k=0

ãk

k!

∑

R

d2
R(Sk) , (B.12)
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where ãk = ek ln[k′/β]−k+N2S̃(β). Like before we will write the partition function in the

following form,

Z =

∫

[dh(x)] exp[−N2Seff], (B.13)

where Seff is given by,

−Seff = −
∫ 1

0
dx

∫ 1

0
dy ln |h(x) − h(y)|

−2

∫ 1

0
dxh(x) ln h(x) + k′ ln

(

ã k′)+ k′ + 1 . (B.14)

Hence the saddlepoint equation is given by,

−
∫ hU

hL

dh′ u(h′)
h − h′ = ln(

h

ξ̃
), (B.15)

where ξ̃ is given by,

ξ̃2 = k′S̃′(β) . (B.16)

For this generic effective action the solutions of the saddle equation are given by,

βS̃′(β) = β for β ∈ [0,
1

4
]

S̃′(β) =
1

4
√

β(1 −√
β)

for β ∈ [
1

4
, 1] . (B.17)

For β ∈ [0, 1
4 ], ξ =

√
β and for β ∈ [14 , 1], ξ = 1

4(1−
√

β)
.

These equations are identical to those obtained by the Hartree-Fock analysis of eigen-

value density eq. (2.21) and eq. (2.22).
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[10] L. Álvarez-Gaumé, C. Gomez, H. Liu and S. Wadia, Finite temperature effective action,

AdS5 black holes and 1/N expansion, Phys. Rev. D 71 (2005) 124023 [hep-th/0502227].

[11] T. Azuma, P. Basu and S.R. Wadia, Monte Carlo studies of the GWW phase transition in

large-N gauge theories, Phys. Lett. B 659 (2008) 676 [arXiv:0710.5873].

[12] M.R. Douglas and V.A. Kazakov, Large-N phase transition in continuum QCD in

two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047].

[13] V.A. Kazakov, M. Staudacher and T. Wynter, Character expansion methods for matrix

models of dually weighted graphs, Commun. Math. Phys. 177 (1996) 451 [hep-th/9502132].

[14] D.J. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory,

Nucl. Phys. B 437 (1995) 541 [hep-th/9410054].

[15] V.A. Kazakov and T. Wynter, Large-N phase transition in the heat kernel on the U(N)

group, Nucl. Phys. B 440 (1995) 407 [hep-th/9410087].

[16] D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge

theory, Phys. Rev. D 21 (1980) 446.

[17] S.R. Wadia, N = ∞ phase transition in a class of exactly soluble model lattice gauge theories,

Phys. Lett. B 93 (1980) 403.
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